# The Spanish Network of Learning Analytics: Achievements and Challenges

Alejandra Martínez Monés - <u>amartine@infor.uva.es</u> GSIC-EMIC (Universidad de Valladolid) SNOLA (Red Española de Analítica de Aprendizaje)

> Seminario eMadrid «Revisión y desafíos en Learning Analytics» 8<sup>th</sup> May, 2020





MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES



### Outline

- Introduction
- Achivements
  - SNOLA A brief historical perspective
  - Current research trends in SNOLA
- Challenges
- Conclusions and open research lines



#### Introduction

- Networks or researchers and technology are at the core of any discipline (Latour, 2005)
- LA has grown "as it is" thanks to its networks



• In Spain:



There is interest in reflecting about the work done and contributions of the network, like in Papamitsiou, Giannakos, & Ochoa, (2020).



Papamitsiou, Z., Giannakos, M., and Ochoa, X. (2020). From childhood to maturity: Are we there yet?: Mapping the intellectual progress in learning analytics during the past decade, in *Proceedings* of LAK 2020 amartine@eMadrid 8/5/2020 3



#### Goals and method

#### • Goals:

- What has been the trajectory of the network?
- What are the main research goals of its members?
- What are the challenges in the field according to its members?
- Method
  - Review of archival data
  - Open ended questionnaire to the members of the network
  - Further elaboration with the respondents

Martínez-Monés, A., Dimitriadis, Y., Acquila-Natale, E., Álvarez, A., Caerio-Rodríguez, M., Cobos, R., Conde-González, M. A., García-Peñalvo, F. J., Hernández-Leo, D., Menchaca, I., Muñoz-Merino, P. J., Ros, S., y Sancho-Vinuesa, T. (2020). Achievements and challenges in learning analytics in Spain: The view of SNOLA. *RIED. Revista Iberoamericana de Educación a Distancia, 23*(2), (preprint).



### Outline

- Introduction
- Achivements
  - SNOLA Overview
  - Current research trends in SNOLA
- Challenges
- Conclusions and open research lines



#### **SNOLA - Members**



amartine@eMadrid 8/5/2020

#### **SNOLA** - History



#### **SNOLA - Collaborations**

#### Open to other groups and stakeholders at a local and international level

LASI Spain 2017 is organized by Universidad Carlos III de Madrid (UC3M), Universidad Nacional de Educación a Distancia (UNED) and Universidad Politécnica de Madrid (UPM) with the collaboration of SNOLA (Spanish Network of Learning Analytics) and eMadrid on July 4-5 at UC3M Puerta de Toledo Campus.

**KEYNOTE SPEAKERS** 



Rebecca Ferguson The Open University



Hendrik Drachsler Open University of the Netherlands



Marina Umaschi Bers Tufts University



Katrien Verbert KU Leuven



Dragan Gasevic University of Edinburgh



8

Yannis

Dimitriadis

GSIC/EMIC

research group.

University of Valladolid

:o :zado

ed

ce

r of gy,





amartine@eMadrid 8/5/2020

VIEW ALL SPEAKERS

### Outline

- Introduction
- Achivements
  - SNOLA A brief historical perspective
  - Current research trends in SNOLA
- Challenges
- Conclusions and open research lines





#### Current research trends

- Analysis of the open questionnaire
- Main results
  - Characterization of the network
  - Identification of 7 (non-orthogonal) research trends
- General characteristics
  - 34 distinct research lines
  - Goals (most cited):
    - Increase learner retention and performance (26)
    - Improve the quality of the learning environment (16)
    - Identify indicators for learning / elements of the learner model (7+4)
  - 7 research trends





| Research Tr<br>Predictive<br>Research line                                          |                                         | j ana<br>User(s) | alyti<br>Data sour                          | S: Student<br>T: Teacher<br>R: Researcher<br>M: Manager<br>ID: Instructional<br>designer | )L/       |
|-------------------------------------------------------------------------------------|-----------------------------------------|------------------|---------------------------------------------|------------------------------------------------------------------------------------------|-----------|
| Prediction of learning results and dropout                                          | (Moreno-Marcos et<br>al., 2020)         | S /<br>T / M     | Students' act<br>(MOOC)                     | tions Random Forest, Regro<br>Neural Networks, Deo<br>Trees                              |           |
| Identification of<br>engineering students at<br>risk                                | (Martínez et al.<br>2019)               | S / T            | Students act<br>(Moodle and<br>Virtual Camp | 1                                                                                        |           |
| Prediction of learning results and dropout                                          | (Cobos & Olmos, 2018)                   | Т/М              | Students action (MOOCs)                     |                                                                                          |           |
| Actionable information based<br>on prediction of academic<br>engagement in MOOCs    | (Bote-Lorenzo &<br>Gómez-Sánchez, 2018) | S / T            | Students' actio<br>(MOOC)                   | ons Feature selection, Machi<br>Learning                                                 | ne        |
| Analysis and classification of student data with prediction purposes (Interactions) | (Agudo-Peregrina et al.,<br>2014)       | T / M / R        | Student's actio<br>(Moodle)                 | ons Log data classification, Re                                                          | egressior |
| Educational data mining                                                             | (Guerrero-Higueras et<br>al., 2019)     | S / T            | Students action<br>(Version system)         | 0                                                                                        |           |
| Definition of high-level<br>actionable indicators based on<br>low level data.       | (Alexandron et al. <i>,</i><br>2017)    | S / T            | Students' actio<br>(MOOC)                   | ons Machine Learning, Artific<br>Intelligence Techniques, S<br>modelling, Heuristics     |           |



#### Research Trends Predictive learning analytics •Gradient

#### **DROPOUT PREDICTION**

- Self-paced MOOCs: Model depend on enrollment date
- Event-based SRL variables are useful to predict dropout
- Good predictions from 25-33% of the theoretical MOOC duration

#### DATA USE to PREDICT

- Videos 🗸
- Exercises 🗸
- Activity
- Self-regulated learning (SRL)
  - Self-reported SRL 🗶
  - Event-based SRL 🗸
- Demographics and intentions



Moreno-Marcos, P. M., **Muñoz-Merino, P. J.,** Maldonado-Mahauad, J., Pérez-Sanagustín, M., Alario-Hoyos, C., & **Delgado-Kloos, C.** (2020). Temporal analysis for dropout prediction using self-regulated learning strategies in self-paced MOOCs. *Computers & Education*, 145, 103728.



# Research Trends Predictive learning analytics

Identification of engineering students at risk









Martínez, J. A., Campuzano, J., **Sancho-Vinuesa, T.,** & Valderrama, E. (2019). Predicting student performance over time. A case study for a blended-learning engineering course. *CEUR Workshop Proceedings*, 2415, 43–55.



#### Research Trends Visual analytics

| Research line                                                                                               | Publication                                 | User(s)          | Data sources                                                                           | Analysis techniques                         |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|----------------------------------------------------------------------------------------|---------------------------------------------|
| Visual analytics of<br>eLearning systems<br>(VeLA)                                                          | (Gómez-Aguilar et al., 2014)                | Т                | Students' actions on the VLE,<br>Grades                                                | Visual analytics                            |
| LA Dashboards for virtual labs                                                                              | (Tobarra et al., 2014)                      | S                | Platforms logs                                                                         | Heuristics                                  |
| Visual Analytics of<br>students' actions                                                                    | (Ruipérez-Valiente, et al.,<br>2015)        | S/T              | Students' actions on the system<br>(MOOC)                                              | Visual analytics                            |
| LA Dashboard for<br>MOOCs                                                                                   | (Cobos et al., 2016)                        | Т/М              | Students' actions on the system<br>(MOOC), grades, demographics,<br>self-reported data | Descriptive Statistics                      |
| Visualization of peer<br>and self-assessment<br>data in Moodle<br>(MWDEX)                                   | (Chaparro-Peláez, et al.,<br>2019)          | Т                | Peer-assessment grades<br>(Moodle Workshops)                                           | Visual Analytics                            |
| Automatic<br>generation of<br>adapted dashboards                                                            | (Vázquez-Ingelmo et al.,<br>2019)           | S / T /<br>M / R | -                                                                                      | Multi-Dimensional<br>Analysis (MDA), ML     |
| Graph generation of<br>educational data in<br>online learning for<br>social network analytics<br>(GraphFES) | (Hernández-García & Suárez-<br>Navas, 2017) | Т/М              | Student activity (Moodle log data-<br>Forums)                                          | Social Network Analysis, Data visualization |





#### Research Trends Visual analytics



#### Dashboard for virtual evaluation laboratories





Tobarra, L., **Ros, S.,** Hernández, R., Robles-Gómez, A., **Caminero, A. C.,** & Pastor, R. (2014). Integrated Analytic dashboard for virtual evaluation laboratories and collaborative forums. In 2014 XI Tecnologías Aplicadas a la Enseñanza de la Electrónica (TAEE) 15



#### Research Trends Visual analytics



 Visualization of peer and self-assessment data in Moodle – Moodle Workshop Data EXtractor (MWDEX)





Chaparro-Peláez, J., Iglesias-Pradas, S., Rodríguez-Sedano, F. J., & **Acquila-Natale, E.** (2019). Extraction, Processing and Visualization of Peer Assessment Data in Moodle. *Applied Sciences*, *10*(1). https://doi.org/10.3390/app10010163



#### Research Trends Visual analytics



#### Automatic generation of adapted dashboards



XML configuration



Vázquez-Ingelmo, A., García-Peñalvo, F. J., & Therón, R. (2019). Taking advantage of the software product line paradigm to generate customized user interfaces for decision-making processes: A case study on university employability. *PeerJ Computer Science*, 5. https://doi.org/10.7717/peerj-cs.203



#### Research Trends Support to active learning strategies

|  | Research line                                                                 | Publication                       | User(s) | Data sources                                                                                          | Analysis<br>techniques                                |
|--|-------------------------------------------------------------------------------|-----------------------------------|---------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|  | Orchestration of collaborative<br>learning activities<br>(PyramidApp)         | (Amarasinghe, et<br>al., 2019)    | S / T   | Actions on PyramidApp:<br>progress in the activity,<br>answers to the tasks,<br>students' discussions | ML, descriptive<br>statistics, data<br>visualization  |
|  | Adaptive learning based on<br>user models                                     | (Muñoz-Merino<br>et al., 2018)    | S / T   | Students' actions on<br>the system (Intelligent<br>Tutoring Systems)                                  | Bayesian networks,<br>rules, Item<br>Response Theory. |
|  | Support to dialogic peer<br>feedback (Synergy)                                | (Er et al., 2019)                 | S / T   | Students actions on the system, content of the feedback,                                              | Descriptive<br>statistics                             |
|  | Social learning supported by<br>learning analytics                            | (Claros et al.,<br>2015)          | S / T   | Students actions on the system (content and social)                                                   | SNA, CSCL                                             |
|  | Learning analytics to improve<br>Flipped Classrooms                           | (Rubio-Fernández<br>et al., 2019) | S / T   | Students' actions on the system (SPOC)                                                                | Visual analytics,<br>clustering,<br>adaptation        |
|  | Definition of design criteria<br>for self-regulated learning<br>support tools | (Manso-Vázquez,<br>et al., 2018)  | Μ       | xAPI profile                                                                                          | -                                                     |





#### Research Trends SNOLA Support to active learning strategies GSIC-EMIC

- Supporting the scalability of collaborative peer feedback
  - Based on a model of dialogic peer feedback
  - Instructor dashboards for class-wide interventions
  - Student dashboards for supporting:
    - Self-regulation, co-regulation, and socially shared regulation of learning.
  - LA-empowered online platform:
    - Synergy, synergylearn.net





Er, E., Dimitriadis, Y., & Gaseviç, D. (2019). An analytics-driven model of dialogic peer feedback. In 13th International Conference on Computer Supported Collaborative Learning (CSCL 2019). 19



#### Research Trends Learning analytics for Learnig Design

| Research line                                                           | Publication                                        | User(s) | Data sources                                                                                                       | Analysis<br>techniques                                                                   |
|-------------------------------------------------------------------------|----------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Support to<br>learning design<br>processes<br>(ILDE2)                   | (Michos, Hernández-<br>Leo, & Albó, 2018)          | Τ       | Actions on<br>ILDE2, (a kind<br>of social<br>network for<br>teachers),<br>feedback on<br>teachers' and<br>students | Social Network<br>Analysis (SNA),<br>data<br>visualization,<br>descriptive<br>statistics |
| Learning<br>analytics for<br>learning design<br>(OrLA, T-Glade,<br>TAP) | (Wiley, Dimitriadis,<br>Bradford, & Linn,<br>2020) | T/R     | Students<br>actions on the<br>system (WISE<br>science inquiry<br>system);<br>submission of<br>results; grades      | TAP (an NLP<br>method)                                                                   |





#### Research Trends LA for Learning Design



- How can teachers investigate the impact of learning activities in their context (e.g. schools)?
- An approach that connects LA with analytics of learning designs across multiple educators in a community





Michos, K., **Hernández-Leo, D.**, Albó, L. (2018). Teacher-led inquiry in technology-supported school communities. BJET 49(6), 1077-1095.



#### Research Trends Assessment support

| Research line                                                                    | Publication                        | User(s)    | Data sources                                       | Analysis techniques                      |
|----------------------------------------------------------------------------------|------------------------------------|------------|----------------------------------------------------|------------------------------------------|
| Definition and adjustment of assessment processes (Ramon /                       | (Villamañe et al.,<br>2017)        | S/T/<br>ID | Students' answers, grades                          | Statistics, Regression,<br>NNLS, Data    |
| TEA)<br>Learning analytics for the<br>assessment of 21st-century skills          | (Menchaca et al.,<br>2018)         | S/T        | Grades                                             | visualization<br>Heuristics              |
| Analysis of Moodle logs for decision making and workgroup assessment             | (Tobarra et al.,<br>2017)          | S / T      | MOOC platform logs                                 | Heuristic                                |
| Workgroup assessment                                                             | (Conde et al., 2018)               | S/T        | Students' actions on the system (VLE)              | Quantitative analysis and heuristics     |
| Measurement and analysis of teamwork indicators in online education (TeamworkRM) | (Hernández-García<br>et al., 2018) | Т          | Students' actions (Moodle log data-Forums & wikis) | Data classification<br>(ETL), Regression |



amartine@eMadrid 8/5/2020



#### Research Trends Assessment support

DeustoLearningLab

#### Assessment of 21<sup>st</sup> century skills

- Integrate formative student assessment data from different tools
- Criteria for data analysis based on assessment rubrics.





Menchaca Sierra, I., Guenaga, M., & Solabarrieta, J. (2018). Learning analytics for formative assessment in engineering education. *The International Journal of Engineering Education*, *34*(3), 953–967.



34

185

164

#### **Research Trends** Assessment support



 Assessment of teamwork to populate a competence ontology





Conde, M. A., Colomo-Palacios, R., García-Peñalvo, F. J., & Larrucea, X. (2018). Teamwork assessment in the educational web of data: A learning analytics approach towards ISO **10018**. *Telematics and Informatics*, *35*(3), 551–563. 24 https://doi.org/https://doi.org/10.1016/j.tele.2017.02.001



#### Research Trends Multimodal and contextual data

| Research line                                                                 | Publication                         | User(s<br>) | Data sources                                                                                        | Analysis<br>techniques                                  |
|-------------------------------------------------------------------------------|-------------------------------------|-------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Students monitoring in<br>blended learning<br>environments (CASA,<br>AdESMuS) | (Villamañe et al.,<br>2020)         | S / T       | Grades                                                                                              | Statistics, Linear<br>Regression, Data<br>visualization |
| Multimodal learning<br>analytics of f2f<br>collaborative learning             | (Vujovic & Hernández-<br>Leo, 2019) | T / R       | Multimodal data,<br>motion capture, EDA,<br>sound, students' self-<br>reported data                 | ML, statistic<br>analysis                               |
| Use of wearables to estimate levels of stress and sleep quality.              | (de Arriba-Pérez et al.<br>2018)    | S           | Biometric signals                                                                                   | ML                                                      |
| Design-aware learning<br>analytics (GLUE!-CASS,<br>Glimpse)                   | (Rodríguez-Triana et<br>al. 2015)   | Т           | Students actions on<br>the system (DLE), data<br>from the learning<br>design, self-reported<br>data | Heuristics                                              |





#### **Research Trends** Multimodal and contextual data GALAN



- Helping teachers to
  - Define the multiple assessment approaches in a course
  - Integrate and analyze the collected data

|                                                             |                          |                              |                        | 🛕 Prothema al cargar la pólgina 🗙 🥜 AdESMuS 🗙 🕂                                                           |                                                                                                      |
|-------------------------------------------------------------|--------------------------|------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                             | EXAMPLE CO               | OURSE                        |                        | ← → C                                                                                                     | 🛡 ☆                                                                                                  |
| Stu                                                         | dent: Peter Smit         | h 💌                          |                        | Grado en Ingeniería Informática de Gestión y Sistemas de Información > Seguridad Informática > Castellano |                                                                                                      |
| ssessment Aproach: Ass                                      | essment Approach 2       | V                            |                        | Subgrupo Subgrupo Subgrupo Estudiante Estudiante - Subgrupo                                               |                                                                                                      |
| tems to assess: Assessabl                                   | e Item B 👿 We            | eight: 70%                   |                        | Seleccionar subgrupo y estudiante Est Line Radar Violin                                                   | Boxplot Elementos evaluables                                                                         |
| Description                                                 |                          |                              |                        | Subgrupo: Alumnos:                                                                                        | ☑ ELEM, 6 (Tarea:Entrega Final Buscaminas - Documentación)                                           |
| Initial report with the plan and econo<br>and the calendar. | mic evaluation for the p | roject. It also includes the | e risk management plan | Labo 1 v nombre 6 apellido 6 v                                                                            | ELEM. 7 (Tarea:Entrega Final Buscaminas - Implementación)                                            |
| anu ure calendar.                                           |                          |                              |                        |                                                                                                           | ELEM. 8 (Tarea:Entrega Final Buscaminas - JAR)     ELEM. 9 (Tarea:Entrega final Sudoku - individual) |
| OUICE: Atomistic Rubric                                     | for Item B               |                              |                        |                                                                                                           | □ ELEM. 10 (Tarea:Entrega final Sudoku - grupo)<br>☑ ELEM. 11 (Examen de Casos de Uso)               |
|                                                             |                          |                              |                        |                                                                                                           | ☑ ELEM. 12 (Examen de Modelo del Dominio) ☑ ELEM. 13 (Examen de Análisis y Diseño)                   |
|                                                             | A                        | В                            | С                      |                                                                                                           |                                                                                                      |
| Objectives' description                                     | Very clear               | Average                      | Confusing              |                                                                                                           |                                                                                                      |
| Use of language                                             | Very<br>appropriate      | Adequate                     | Poor                   |                                                                                                           | Labo 1 Control 6 spellido 6                                                                          |
| Oraanization                                                | Very clear               | Average                      | Confusina 🗵            | 70                                                                                                        |                                                                                                      |
|                                                             |                          | Comput                       | ed Grade: 8.0          | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                    | Elen. 12                                                                                             |
| eedback                                                     |                          | comput                       | .cu diduc. 0.0         | <sup>99</sup> 40                                                                                          |                                                                                                      |
| The work is quite good                                      |                          |                              |                        | 30                                                                                                        | Een 13 Een 4                                                                                         |
|                                                             |                          |                              |                        | 10                                                                                                        |                                                                                                      |
|                                                             |                          |                              |                        | 0-<br>Elvim 1 Elvim 2 Elvim 3 Elvim 4 Elvim 5 Elvim 6 Elvim 7 Elvim 11 Elvim 12 Elvim 13                  | Elen 7 Elen 6                                                                                        |
| _                                                           | Save                     | Cancel                       |                        |                                                                                                           | Den 6                                                                                                |
|                                                             |                          | cuncer                       |                        |                                                                                                           |                                                                                                      |





Villamañe, M., Alvarez, A., & Larrañaga, M. (2020). CASA, An Architecture to Support Complex Assessment Scenarios. IEEE Access. 26 https://doi.org/10.1109/ACCESS.2020.2966595

#### Research Trends Multimodal and contextual data



**SNOLA** 

 Do sensors in wearables provide adequate data to estimate stress and sleep quality?





de Arriba-Pérez, F., **Caeiro-Rodríguez, M.,** & Santos-Gago, J. M. (2018). How do you sleep? Using off the shelf wrist wearables to estimate sleep quality, sleepiness level, chronotype and sleep regularity indicators. *Journal of Ambient Intelligence and Humanized Computing*, 9(4), 897–917. https://doi.org/10.1007/s12652-017-0477-5<sup>27</sup>



#### Research Trends Sentiment analysis

| Research line                                                                   | Publication                    | User(s) | Data sources                                                   | Analysis techniques                                                                      |
|---------------------------------------------------------------------------------|--------------------------------|---------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Social and sentiment analysis                                                   | (Ros et al.,<br>2017)          | S / T   | Forum messages                                                 | Heuristics                                                                               |
| Academic success<br>prediction based on<br>emotion modelling<br>(PresenceClick) | (Ruiz et al. <i>,</i><br>2018) | S / T   | Sensors, self-<br>reported emotions                            | Transition matrix,<br>Decision trees, Data<br>visualization                              |
| Sentiment Analysis                                                              | (Cobos et<br>al., 2019)        | Т/М     | Student. actions<br>on the system<br>(MOOCs), MOOC<br>contents | Descriptive<br>analytics, Natural<br>Language Processing<br>(NLP), Sentiment<br>Analysis |

amartine@eMadrid 8/5/2020





#### Research Trends Sentiment analysis

**GHIA** Grupo de Herramientas <mark>Interactivas</mark> Avanzadas

edX-CAS A Content Analysis System that supports Sentiment Analysis for Subjectivity and Polarity detection in Online Courses at edX





**Cobos, R,** Jurado, F., & Blázquez-Herranz, A. (2019). A Content Analysis System that supports Sentiment Analysis for Subjectivity and Polarity detection in Online Courses. *IEEE Revista Iberoamericana de Tecnologías Del Aprendizaje*, *14*(4), 177– 187. https://doi.org/10.1109/rita.2019.2952298



### Outline

- Introduction
- Achivements
  - SNOLA A brief historical perspective
  - Current research trends in SNOLA
- Challenges
- Conclusions and open research lines





### Challenges

- Increase adoption by end users (8)
- Ethical, privacy, and security issues (7)
- Quality of process and the results (6)
- Increase personalization / adaptation / interoperability of data and tools (5)
- Improve real learning (5)
- Apply LA at an institutional level (5)







#### **Conclusions & Open research lines**

- SNOLA has maintanined sustained levels of activity and boosted research in LA in the Spanish context
- This work provides a first overview of the activity of SNOLA, its research trends and interests
- New research lines are open
  - Contribute to international reflection on current trends and challentes in LA
  - Identification of gaps and challenges to drive future action





#### Thanks on behalf of all the SNOLA team!



# SNOLA Since Structure Stru





MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

